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Coulomb-like potentials 
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Abstract The energy levels of the D i m  equation with a KohnSham (KS) potential are 
obtained using algebraic perturbation theory based on the dynamical group smcture SO(2. I )  
without mLing m y  non-relativistic approKimation. It has been shown that this formalism 
reproduces the exact analytical result for the, eigenvalues of the D i m  equation with both vector 
and scalar Coulomb potentials. The lowest-order results obtained from the analytical formulae 
are found to be in excellent agreement with exact numerical results. 

1. Introduction 

Exact analytical solutions of Dirac equation with spherically symmetric potentials can be 
obtained only for a few special cases like the Coulomb potential [I], the Dirac oscillator [2] 
and for some potentials where the vector and scalar parts are equal and the Dirac equation 
can be reduced to a solvable Schrodinger equation [3]. Recently various perturbative 
and other approximation methods 141 have been adopted to obtain Duac eigenvalues and 
eigenfunctions, but most of these methods involve either non-relativistic assumptions [5] or 
lengthy analytic expressions and more computational time. 

On the other hand, it has been known that the energy spectra associated with some 
Hamiltonians can be obtained in a rather simple and elegant way from a knowledge of 
suitable representations of certain Lie algebras. The algebra used to obtain the eigenvalues 
and eigenfnnctions is referred to as the spectrum generating algebra and the method used is 
known as dynamical group method [6]. For several interesting applications of this method 
to non-relativistic quantum mechanics we refer the reader to [7]. 

For the ordinar? relativistic Dirac problem, the application of the dynamical group 
method was initiated by Barut and Bornzin [SI. (For earlier references on this topic see 
also [8].) With the help of the tilted state formalism [9] they solved the relativistic Kepler 
problem for particles with both electric and magnetic charges. The explicit forms of the 
O(4.2) algebra and two special O(2, 1) algebras were given by them and a new group 
theoretical form of the symmetry breaking was pointed out. 

In this paper we shall use the Lie algebra of SO(2.1) group given in [SI together 
with the variational scaling of the parameter involved, to obtain analytical expressions for 
the energy values of the Dirac equation with screened Coulomb potentials which are of 
great importance in a variety of fields such as atomic, nuclear and particle physics. In the 
following we shall be mainly interested in obtaining the analytical expression for the energy 
values of the KohnSham (KS) potential which is often utilized in relativistic calculations 
[lo]. 
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This potential has been previously treated by both perturbative [ 111 and non-perturbative 
methods [12]. In the former approach the analytical expression obtained for energy values 
was quite complicated and, in the latter, instead of using the Dirac equation the authors 
dealt with the Klein-Gordon equation in which a spin-orbit interaction term was included 
following Papp 1131. However, their formula failed to give satisfactory results in the sense 
that the contribution from the spin-orbit interaction term was less than that required to 
explain the actual splitting. 

The main motivation of the present work is to overcome the shortcomings of previous 
approaches and to formulate an elegant algebraic approach exploiting the dynamical 
symmetry of the problem, without making any non-relativistic approximation. In the 
following we shall show that group theoretic approach yields a fairly simple analytic formula 
which will give the energy values with good accuracy (much better than the previous ones). 
It is worth mentioning that our analytic formula not only reproduces sufficiently accurate 
energy values for Coulomb plus linear potential [I41 but it also gives exact analytic results 
for a generalized Dirac Coulomb problem involving a Coulomb potential with both Lorentz 
vector and Lorentz scalar parts [I51 obtained in [I51 (though, of course, in this case a 
slightly different representation of the SO(2, 1) algebra is necessary). 

The organization of this paper is as follows. In section 2 we shall give the mathematical 
preliminaries of the SO@, 1) Lie algebra used in this paper. In section 3 we shall describe 
the dynamical group method to apply it to Ks and other potentials and finally section 4 is 
kept for discussions and conclusions. 

2. Mathematical preliminaries 

The SO(2, 1) Lie algebra consists of the three generators T3, T' = Tl & iTz with the 
commutation relations 

(1) [T+, T-] = -2T3; [T3, T*] = iT* 
and the Casimir invariant is 

T2 = T? - $(T+T- + T-T+). 

For our purposes, the most useful representation of T3, T I ,  TZ is the following (see 
equation (2.31) in [SI) 

(3) 
, .  I 1 

r 
T3 = f { r p z  + r + -(-or' - iora . P )  

Tz = r  . p  - i 

Here c1 E R will denote, at a later stage, the fine structure constant, or denotes Dirac's 
matrices (see equation (8)) and r = lrl, P = rlr. 

These generators act in the Hilbert space L2(R33, x C4 and are self-adjoint not with 
respect to the usual scalar product of quantum mechanics J @;Jrz d3r but with respect to 
the new scalar product [9] 

(4) 

on L2(R3),  where 1@1) and I h )  are called the group states. This is not the physical scalar 
product although this can be expressed in terms of the invariant group theoretic product 

1 
(@I Ih) = / 14%; d3r 
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1161. These group states are characterized by the principal quantum number n and the total 
angular momentum j ,  i.e. I@) = In. j )  and they satisfy the orthogonality relation 

h, jdn .  j )  = 6 n i , n U i , j  (5) 

and the completeness relation 

2 In, j ) ( n ,  j l  = 1. (6) 
“=j+l 

In the discrete series of representations D: a* < j ( j  + l), and the Casimir operator T z  
(of equation (7)) is greater than zero. Here the range of values of n and j are given by 
j = O ,  i , l , ?  ,... a n d n =  j + l ,  j + 2  ,.... 3 

In representation (3) the Casimir~operator T 2  is given by [8] 

T’ = .iZ - a’ - irva . c = n’(n’ + 1) (7) 

where J = T x p and n‘ denoting the eigenvalue of 7’’ and is given by equation (12). 
Now T 2  can he written as 

T~ = rz - r (8) 

where the operator 

r = u. J S  iaa . i s  1 (9) 

has the property that 
rZ=(J+fo)2-a 2 1  iZ 

= j ( j + 1 ) - a 2 + +  (10) 

where U denotes the usual Pauli matrices and j denotes the total angular momentum of the 
particle. 

From equation (10) the eigenvalues of r are 

y = i [ ( j  + 4)’ - a I 

n’= - y  or y - 1. (12) 

(11) 2 l j 2  

and, from equation (7), we get 

If we diagonalize T, simultaneously with T 2  (this choice is necessary for a proper 
description of bound states) then the discrete spectrum of f i  in the D+ representation will 
be given by 

n = y + s  (13) 

where S = 0, 1,2,. . .. 

operator T 2 )  to be real 
From equations (7) and (11) it is clear that for n‘ (which is associated with the Casimir 

a* i ( j  + (14) 

and then we obtain the D+ representations of the discrete series of SO(2, 1) which is 
bounded below. 
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3. Dynamical group method 

The Dirac equation for a central potential V ( r )  can be written in the form H,l&) = El&) 
where 

Ho = a .p+pm+ V ( r ) ( h  = c  = 1) (15) 

and \I, = (!) with rp and x are two-component spinors and 

V ( r )  is the potential and E is the energy of the bound electron. For the KS potential [ l l ]  

(17) 
a 
r 

V ( r )  = --[I + VrAr + Vz(Ar)'+ G(Ar)3] 

where a = aZ and A = 1.13aZ'/3 is a small parameter characterizing the screening (a is 
the fine structure constant and Z the nuclear charge). 

Now the Dirac equation with Hamiltonian (15) and the potential (17) can be put in the 
following form 

(18) 
a 

( a . p + p m ) l G )  = (E'+ - - k r  - g r 2 )  I&) 

wherea = a, k = -aVzA2, g = -aV3A3, E' = E+& 6 = aVIA. Without loss ofgenerality 
we put 6 = 0 and henceforth we shall write E instead of E'. 

Operating (a . p + @m) on both sides of equation (18) from the left and multiplying 
both sides of the resultant equation by r ,  we get, after some straightforward calculations, 

(rp2+rm2)l&) = r  ( E +  - - k r  -gr') (E+ - - k r  - g r Z  1") 

r 

) -  
a a 
r r 

1 - .  (W 

B(E)l&) = 0 (18b) 

f f . T  + (ia- + i k r a  . C + 2igr'a. C I*) 
r 

Now to relate the Lie algebra (1) to equation (Ma), the latter is put into the form [8]  

where the operator 

fi(E) = rp2 - r ( E Z  - mz - 2ak) - -(az + i a a .  C) - i a  . Ckr - 2ia. Cgr' 
1 
r 

-2aE + 2Ekrz + 2Egr3 - kZr3 - 2gkr4 - g2r5 + 2agrz 

4 T- z z ( 2 2  
= T 3 + - + - - ( E  - m  -2ak )  T 3 - - - -  

2 2  
(T2 - J 2  + a*) 

LY 
+ 
+(2Ek+2ag) 
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In equations (18)qlSb) I$) denotes the physical state. These physical states 14) are 
normalized and are orthogonal with respect to a different metric. In coordinate space, this 
amounts to the usual scalar product 

Now the tilting transformation is implemented as [9] 
.+eri f i (~)~iBT~~-ieT? - I*) = o  

so that 

CKE, e ) i w  = o 

d ( ~ ,  e) = e- L8r2fqE)elsTz 
where 

~ ( 2 1 4  

and 

I$) = e- i s~ lG) .  (22) 

The latter is therelation between the group state I$) and the physical state I*). Here we 
use the result that if H @  = E$ is an eigenvalue problem, then we can write HI@' = E@', 
E being the same in both the cases and where H' = A H A - ' ,  I// = A$ (incidentally, 

is a unitary operator [22].) Therefore, the equivalence of equation (21a) to the 
original eigenvalue (186) is obvious. Here ff is allowed to depend on n and j so that the 
physical state 16) is also dependent on n,  j and 8. 

It follows from the commutation relations (1) that 

e-ifieT+eir,8 = T+coshB + T3sinh0 

e-ifi8T-ei"8 = T-coshB+ T3sinhB. 

Using relations (23) in equation (19) we get 
'+ 8 T- 
2 2 

f i ( E ,  e) = T3es + -e + -es - ( E  - in2 - 2ak)ed (T3 - - 

-2aE + (2Ek + 2ag)eCZB T3 - - - - ( : :r 

Now to obtain the energy values we have to solve the equation 

R ( E ,  e)\*) = o 
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(IW) = In, j )  being the group states) which can be written as 

(fiD(~, e )  + f i N d ~ .  e)) iw = o 
where f 2 ~ ( E ,  0) and ~ ~ N D ( E ,  e )  denote respectively the diagonal and non-diagonal parts 
respectively of fi(E,O). By the term diagonal parts of s ( E , B )  we mean the terms 
involving the operators E, T2,  J 2  and powers of them and the constant terms associated 
with the identity operation in equation (24), because we know that these operators can be 
simultaneously diagonalized. The other terms in 6 ( E ,  e )  are called non-diagonal terms. 
Specifically, the diagonal terms are 

(T2  - J 2 +  a') 
f i ~ ( E ,  e) = GeQ - (E2 - m2 - Zffk)Ge-' + ke-e T3 

ff 

-20! E + (2Ek + 2ffg)e-28 (T - :) 

Now it is obvious that equation (26) can only be solved perturbatively as it contains 
the non-diagonal terms. For this purpose an algebraic form of the perturbation theory can 
be used which was first formulated by Barut and Nagel [20] and later modified by Gerry 
and Inomata [Zl]. In this perturbation scheme the non-diagonal terms are treated as small 
order terms and for a particular n-value, one has to fix the e-value (e = en), because here 
e is allowed to depend on n and j .  It is then possible to have a closed form normalization 
for the perturbed states. 

The lowest-order approximation to the energy means the energy which is obtained from 
the following equation [5 ]  

(n ,  j I M E ,  j )  = o (26b) 
which has to be solved to obtain E. As mentioned above higher order corrections to 
E can be obtained following the scheme of [20,21]. However, since here we give only 
the lowest-order results for the energy eigenvalues we skip the details of the higher order 
calculations. 

Now expanding the different powers of (G - % - G )  in equation (24) and using 
equation (26), we get, after some straightforward algebra, 

where 

A = 3 2  - ( y 2  - y )  

B = 5z3 - 3ii(yZ - y )  + r? 
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(y2 - 7 )  - x(x + 1) +a2 c =  
D = 35i4 + 25A2 - 30(yz - y)i i2 + 3(y2 - y)' - 6(yz  - y )  

a 

F = 63 i5  + 87i3 + 6ii - 70(y2 - y ) i '  - 38ii(y2 - y )  + 15ii(y - y)' (28) 

where x in the expression for C is as follows. x is the eigenvalue of the operator 1 + aj. 
More commonly 

x = -  l ( l + l )  i f j = l + i  1 

I (29) 

It is to be noted that x(x + 1) = l(1 + 1) always holds true. Thus the number 1, i.e. the 
degree of the ordinary spherical harmonics in terms of which spherical harmonics~with spin 
are expressed is nothing but the azimuthal quantum numbers of SchrBdinger theory 1181. 

= 1  if j = 1 - ?. 

Now 0 is chosen in such a way that E is minimized i.e. 

dzE - > 0. 
dE - = o  
dB dez 

This method of treating 0 as a variational parameter is just the scaling variational method 
since TZ is essentially a generator of scale transformations 1191. It is to be noted that the 
minimization condition (30) is to be used for each individual energy level. Hence we obtain 

gB?] [ea (1 + $) +e-' 1 a g A  + - CAg 
2ii n n 

Equations (27) and (31) rogether give E' for various values of Z, a, x and g. 
We now discuss the following three cases. .~ 

3.1. Point Coulomb problem: V ( r )  = - a / r  

In this case 6 = k = g = 0 in equation (18). Equation (31) gives 

ma 1 es = - 
f i  

so that from equation (27) we get 

which illustrates that our formulae (27) and (31) reproduce exact results for the binding 
energies of the Coulomb potential. 
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3.2. Coulomb potential with vector and scalar parts equal to -CL f r and -a /r  respectively 

In this case the Dirac equation is HI@) =El@) where 

(34) 

We slightly modify the generators of the SO@, 1) algebra given in (3) in the following 

a f f  H = a. p + p (m - -) - -_ 
r r  

way: 

1 

r 
rpz + r  +  CY^+^^ - i(ff0r. P -@ao:. P 

1 
2 4 

rp2 - r + -{-az + a 2  - i(Or0r. P - B a a .  (35) 

T2 = r . p - i 

and they satisfy the commutation relations given in equation (1). We shall quote in the 
following the essential steps as the detaiIed discussion can be found in sections 2 and 3. 

The Casimir operator is given by ’ 
T’ = J’ -a2 +aZ -i(a -pa)or .F  

= n’(n’ + 1) 

n’ denoting the eigenvalue of T2 and n’ = --y or y - 1 where 

y = * [ ( j  + $1’ - or2 + a21t’Z. (37) 

The eigenvalues of T3 will be given by 

r i = y + s  s=o,1,2 ,.... 
In this case equation (24) reads 

A ( E ,  e) = TI[e’ + ( E ~  - m2)e-’] + %[ee - ( E ~  - m2)e-’] - ZLXE - 2am. (38) 

Now choose 0 in such a manner that the coefficients of TI vanish so that 0 is given by 

(39) ezB = m2 - E2 

and from equation (38) using (39) we get 

which agrees completely with the results obtained in [15]. 

Table 1. Potential expansion coefficients from the third-order polynomial least-squares fit to the 
KS potential with A = 1.13rrz’/3 t ~ e n  from [Il l ,  

z VI v, v3 

13 -1.04 0.74 -0.25 
30 -1.13 0.91 -0.35 1 
74 -1.21 1.06 -0.43 
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0.0- 

TabIe 2. Relativistic binding energies in keV for the Ks potential as a function n, x and 2. For 
comparisons. we also give the results of numerical calculations [111, Am 1111 and SLNT 1121. 

Present result 
Hall . . . . . - . . . . 

Binding energies in keV Percentage of erron 
~~ ~ ~~ ~ 

Present Present 
Z n  Numerical ~m SLNT work APT SLNT work 

13 1 -1 1.505 1.503 1.471 1.5145 0.1 2.0 0.6 
30 1 -1 9.506 9.552 9.469 9.5727 0.5 0.4 0.7 

2 -1 1.157 1.099 1.094 1.1676 5.0 5.0 0.9 
1 1.021 0.9547 1.095 1.0456 7.0 7.0 ~ 2.4 

-2 0.9969 0.9299 0.8619 0.9999 7.0 14.0 0.3 
74 1 -1 69.34 70.14 69.90 70.1745 1.0 0.8 1.2 

2 - 1  11.96 11.94 11.86 12.0667 0.2 0.8 0.9 
1 11.44 11.46 11.87 11.6236 0.2 4.0 1.6 

-2 10.09 10.05 9.747 10.1675 0.4 3.0 0.8 

Figure 1. Energy mjectory with CI = 112 and j = 112. 

I Present result .,. .. . . Hall 

W - 
& 

’- 0.01s I 
0.0001 0.0002 0.00025 

A- 

Figure 2. Energy rmjectory with a = 112 and j = 5/2. 

3.3. Coulomb plus linear potential: V ( r )  = - a / r  + kr 

In this case 8 = g = 0 in equation (18), so that from equation (30) we get 
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and equation (27) gives 

aree Ake-E A2k2 k2B 
E = - _ + -  n 2 i  + [e28 (1 + $) +e-= (5 - x) 

-_ rvAk + Ck + in2 + 2 ~ k ] " ~ .  
r72 

Equations (41) and (42) together give the binding energies for LY and k .  

4. Results and conclusions 

In table 1, we give the potential expansion coefficients' for a particular value of Z taken 
from [ll]. In table 2, we give the relativistic binding energies obtained from equations (27) 
and (31) and compare them with the results from analytic perturbation theory (Am) [ll], 
shifted large N technique (SLNT) [12] and numerical calculations [ll]. It is evident from 
the table that our lowest-order analytical results which are simple, in principle, to calculate, 
are in excellent agreement with the numerical calculations, the maximum error being 2.496, 
whereas in the c a e  of APT it is 7% and 14% in SLNT. 

In figures 1 and 2 we compare our results obtained from equations (41) and (42) with 
those from [I41 and both the figures indicate that our results reproduce the results of [14] 
with good accuracy. 

So, in this paper, we have succeeded in obtaining compact analytic expressions as well as 
fairly accurate numerical results for the KS potential and Coulomb plus linear potential. The 
present method is quite general in the sense that it is applicable to any radially symmetric 
potential. Moreover, in this approach it is not necessary to reduce the Dirac equation to 
Schrodinger-like form before applying SO(2,1) formalism. 
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