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Abstract. The energy levels of the Dirac equation with a Kohn—Sham (xs) potential are
obtained using algebraic perturbation theory based on the dynamical group structure SO (2, 1)
without making any non-relativistic approximation. It has been shown that this formalism
reproduces the exact analytical result for the eigenvalues of the Dirac equation with both vector
and scalar Coulomb potentials. The lowest-order results obtained from the analytical formulae
are found to be in excellent agreement with exact numerical resalts.

1. Introduction

Exact analytical solutions of Dirac equation with spherically symmetric potentials can be
obtained only for a few special cases [ike the Coulomb potential [1], the Dirac oscillator [2]
and for some potentials where the vector and scalar parts are equal and the Dirac equation
can be reduced io a solvable Schrédinger equation [3]. Recently various perturbative
and other approximation methods [4] have been adopted to obtain Dirac eigenvalues and
eigenfunctions, but most of these methods involve either non-relativistic assumptions [5] or
lengthy analytic expressions and more computational time.

On the other hand, it has been known that the energy spectra associated with some
Hamiltonians can be obtained in a rather simple and clegant way from a knowledge of
snitable representations of certain Lie algebras. The algebra used to obtain the eigenvalues
and eigenfunctions is referred to as the spectrum generating algebra and the method used is
known as dynamical group method [6]. For several interesting applications of this method
to non-relativistic quantum mechanics we refer the reader to [7].

For the ordinary relativistic Dirac problem, the application of the dynamical group
method was initiated by Barut and Bornzin [8]. (For earlier references on this topic see
also [8].) With the help of the tilted state formalism [9] they solved the relativistic Kepler
problem for particles with both electric and magnetic charges. The explicit forms of the
0(4,2) algebra and two special 02, 1) algebras were given by them and a new group
theoretical form of the symmetry breaking was pointed out.

In this paper we shall use the Lie algebra of SO(2.1) group given in [8] together
with the variational scaling of the parameter involved, to obtain analytical expressions for
the energy values of the Dirac equation with screened Coulomb potentials which are of
great importance in a variety of fields such as atomic, nuclear and particle physics. In the
following we shall be mainly interested in obtaining the analytical expression for the energy
values of the Kohn—Sham (KS) potential which is often utilized in relativistic calculations
(10]. ’
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This potential has been praviously treated by both perturbative [11] and non-perturbative
methods [12]. In the former approach the analytical expression obtained for energy values
was quite complicated and, in the latter, instead of using the Dirac equation the authors
dealt with the Klein—Gordon equation in which a spin—orbit interaction term was included
following Papp [13]. However, their formula failed to give satisfactory results in the sense
that the contribution from the spin—orbit interaction term was less than that required to
explain the actual splitting.

The main motivation of the present work is to overcome the shortcomings of previous
approaches and to formulate an elegant algebraic approach exploiting the dynamical
symmetry of the problem, without making any non-relativistic approximation. In the
following we shall show that group theoretic approach yields a fairly simple analytic formula
which will give the energy values with good accuracy (much better than the previous ones).
It is worth mentioning that our analytic formula not only reproduces sufficiently accurate
energy values for Coulomb pilus linear potential [14] but it also gives exact analytic results
for a generalized Dirac Coulomb problem involving a Coulomb potential with both Lorentz
vector and Lorentz scalar parts [15] obtained in [13] (though, of course, in this case a
slightly different representation of the SO(2, 1) algebra is necessary).

The organization of this paper is as follows. In section 2 we shall give the mathematical
preliminaries of the SO(2, 1) Lie algebra used in this paper. In section 3 we shall deseribe
the dynamical group method to apply it to KS and other potentials and finally section 4 is
kept for discussions and conclusions.

2. Mathematical preliminaries

The SO(2, 1) Lie algebra consists of the three generators 73, Ty, = T1 X iTh with the
commutation relations

[T., T.] = =275, [0, Te] = £ Ty (D
and the Casimir invariant is
T2 =T} — 3 (T4 T-+ T_Ty). @

For our purposes, the most useful representation of T3, T7. T3 is the following (see
equation (2.31) in [8])

T3=l{rp2+r+-1—(—a2--iaa-f')]

2 r

h=r-p-i s ©)
1 2 1 45 . “

T’=5 rp —r+—(-—rx —lwee-T)p.

Here ¢ € R will denote, at a later stage the fine structure constant, ¢ denofes Dlrac ]
matrices (see equation (8)) and r = |7[, ¥ = 7|r.

These generators act in the Hilbert space L2(R3?) x €* and are self-adjoint not with
respect to the usual scalar product of quantum mechanics [ ¥y d*r but with respect to
the new scalar product [9]

wilv) = [ 9iver &r @

on L2(R3), where |v) and |v,) are called the group states. This is not the iahysical scalar
product although this can be expressed in terms of the invariant group theoretic product
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[16]. These group states are characterized by the principal quantum number # and the total
angular momentum j, i.e. |¢r) = |n, j) and they satisfy the orthogonality relation

{n1, juln, j) = 8nq, ndjt, j (5)
and the completeness relation
m -
D i i, il =1, 6)
n=j+1
In the discrete series of representations D% o® € j(j + 1), and the Casimir operator 72

{of equation (7)) is greater than zero. Here the range of values of n and j are given by

j=0,313 . ..andrn=Jj+1,j+2,...

In representation (3) the Casimir operator T2 is given by [8]
T*=7t—o?—iaa-#=n"(1+1) : 7

where J = r x p and #’ denoting the eigenvalue of 72 and is given by equation (12).
Now T2 can be written as

T =r2-T @)
where the operator

F'=g.J+ica-F+1 . @)
has the property that

M= (J+10)? - +4

=jG+D -’ +3 (10)
where o denotes the usual Pauli matrices and j denotes the total angular momentum of the
particle.

From equation (10) the eigenvalues of I' are

y = =£[(j + 1)* — 12 (11)

and, from equation (7), we get

I

=y or y—1 _ (12)

If we diagonalize 73 simultaneously with T2 (this choice is necessary for a proper
description of bound states) then the discrete spectrom of 73 in the D5 representation will
be given by

n=y+S§ (13)

where §=0,1,2,.... .
From equations (7) and (11} it is clear that for #’ (which is associated with the Casimir
operator T2) to be real

o’ < (j +3)? (14)

and then we obtain the Dy representations of the discrete series of SO(2, 1} which is
bounded below.
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3. Dynamical group method

The Dirac equation for a central potential V' (r) can be written in the form Hp|¥) = E|¥)
where

Hy=ca-p+pm+V@HE=c=1) (15)

and ¥ = (i) with ¢ and x are two-component spinors and

-(25) a5 %)

V{r) is the potential and E is the energy of the bound electron. For the XS potential [11]
V() = —f}[l + ViAr + VaGhr)2 4 V3 ()] arn

where @ = «Z and A = 1.13¢Z"/® is a small parameter characterizing the screening (x is
the fine structure constant and Z the nuclear charge).

Now the Dirac equation with Hamiltonian (15} and the potential (17) can be put in the
following form

(- p+ pm)|E) = (E’ +$ —kr —grz) %) (18)

where ¢ = a, k = —aVod?, g = —aV3i?, EY = E-+4, § = aVyA. Without loss of generality
we put § = 0 and henceforth we shall write E instead of E'.

Operating (c - p + Sm) on both sides of equation (18) from the left and multiplying
both sides of the resultant equation by r, we get, after some straightforward calculations,

(rp* 4+ rm®)\y =r (E + % —kr — érz) (E + % —kr — grz) D)

+(ioca):T -l-ikra-*?‘-l—iligrza-f') 19y, (18a)

Now to relate the Lie algebra (1) to equation (18a), the latter is put inio the form [8]
QUENT) =0 (186)
where the operator
- 1
QUE) = rp* — r(E* — m? = 20k) — (& + ive - #) — i - Fkr — 2icx - gr?
r

—20E + 2Ekr® + ngr3 — k%3 = 2gkr® — g%r° 4+ 20gr?

T, T . g T, T-
= s (B emi2ek) (- -
T3+ 2 + 2 ( m oz)(T3 2 2
T2 — J2+a? T, T-
.,_(__i:‘i_}_k Ty— = -2} —2aE
o 2 2
T T-V 5 T, T\
2 _*+_= 2FEe — k &+ _ =z
+(2Ek + 2ecg) (T'_:, > 2) + (2Eg )(Tg 5 5
T, T-\* T, T-Y
‘2"3(T3‘7“7) "¢ (TB"?"?

T2 — J? 4 o2 T T-\°
+2 (—?i)g(T3_i_—) : (19)
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In equations (18)—(185) |3) denotes the physical state. These physical states ) are
normalized and are orthogenal with respect to a different metric. In coordinate space, this
amounts to the usual scalar product

lrtiy = [ 5158 @0
Now the tilting transformation is implemented as [9]

e 0T (E)ef e~ B ) = 0 - } (la)
50 that

QUE. )W) =0 (215)
where

Q(E, 8) = e IR E)e D

- and

) = e RN, (22)

The latter is the relation between the group state [1) and the physical state |\¥). Here we
use the result that if Hy = Ev is an eigenvalue problem, then we can write 'y’ = Ev/,
E being the same in both the cases and where H' = AHA™!, ¢/ = Ay (incidentally,
e %% s a unitary operator [22].) Therefore, the equivalence of equation (21a) to the
original eigenvalue (185) is obvious. Here @ is allowed to depend on » and j so that the
physical state () is also dependent on #, j and 6.

It follows from the commutation relations (1) that

o T, T
e Tye™ = Ty coshd + (7* + %) sinh @ ‘
(23)

e R8T, ™% = T, coshf + Tasinh @
e I ET e = T_cosh6 + Tasinh6.
Using relations (23) in equation (19) we get
= , T T.
Q(E,0) = Tae° + + —(E — m?* - 2ak)e? (T3 — -Zi - 7)
T2 - 12 +a?y, T, T
1\ T, — =t _2=
- ( > ) ® ( T3 )
T \2
—20E + (2Ek 4 20g)e™% (1"3 - T—; — 7)
T. T- . T\
— ke i) I+ _ -
+(2Eg — ke ( > = ) 2kge” (T3 > )
To T-V
o2.—30 I
g'e (T3 > 5 )
2__ g2 2 T 2
+2 (T—+—°‘) ge ¥ (Tg L —).. (24)
o 2 2

Now to obtain the energy values we have to solve the equation
QUE, )W) =0 (25)
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{1¥) = |n, J) being the group states) which can be written as
(€p(E, 8) + Sanp(E, 6)|¥) = 0 (26)

where fBD(E, 8) and QND(E, #) denote respectively the diagonal and non-diagonal parts
respectively of $Y(E,9). By the term diagonal parts of QU(E, 8) we mean the terms
involving the operators T3, T2, J2 and powers of them and the constant terms associated
with the identity operation in equation (24), because we know that these operators can be
simultaneously diagonalized. The other terms in $2(E, 6) are called non-diagonal terms.
Specifically, the diagonal terms are

Qp(E, 8) = e — (E? —m® — 20k)The™® + e™’n

(T2 —J2 4 oﬁ)k
(4

312 T2
—20E + (2Ek + 2ag)e™ (73 - 7)

+@2Eg ~ ke ¥ (3T} - 3T°T] + 4 T)
~2kge (2T + BT - RT°T + H(TH* - 3T
_826—59{%T35 + %21'33 + %T3 _ 34_5'['2:['33 — %T2T3 + %E(Tz)Z}

2 72,2 2 2
+2 (—T ol )ge-” (E—T—). (26a)
o 2 .2

Now it is obvious that equation (26) can only be solved perturbatively as it contains
the non-diagonal terms. For this purpose an algebraic form of the perturbation theory can
be used which was first formulated by Barut and Nagel [20] and later modified by Gerry
and Inomata [21]. In this perturbation scheme the non-diagonal terms are treated as small
order terms and for a particular z-value, one has to fix the 8-value (¢ = 8,), because here
8 is allowed to depend on » and j. It is then possible to have a closed form normalization
for the perturbed states.

The lowest-order approximation to the energy means the energy which is obtained from
the following equation [5]

in, jIQp(E, B)ln, jy=0 (26b)

which has to be solved to obtain E. As mentioned above higher order corrections to
E can be obtained following the scheme of [20,21]. However, since here we give only
the lowest-order results for the energy eigenvalues we skip the details of the higher order
calculations.

Now expanding the different powers of (T3 — 2"21 - %—) in equation (24) and using
equation (26), we get, after some straightforward algebra,

Ak B 2 A+CA
oo fers ons o () (255) -2

—g
2n 2n

il R
A% 2B AkgB kgD
—20 _ —35 _
e { FEENET ] Te { 2 47 }
2p2 g Ak 12
e {g - } — o+ + 2ak + Ck] @7)

where
A=3"—(y*—y)
B =57 —3R(y*—y)+1
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(yz—r)—mf(x+1)+or2_

C =
[#4
D = 35a* + 257% — 300y — A2+ 3032 — ) - 6(y% — )
F = 631° + 877° + 611 — T0(y* — y)i® — 387032 — ) + 154(y — y)? (28)

where » in the expression for C is as follows. » is the e1gcnva1uc of the operator 1 + o5.
More commonly

x = 1(1+ 1) if j=1-+1

29
=1  ifj=1-1L 9

It is to be noted that x(x + 1) = 1(I + 1) always holds true. Thus the number 1, ie. the

degree of the ordinary spherical harmonics in terms of which spherical harmonics with spin

are expressed is nothing but the azimuthal quantum pumbers of Schrodinger theory [18].
Now £ is chosen in such a way that E is minimized i.e.

dE . d&2E

This method of treating & as a variational parameter is just the scaling variational method
since T» is essentially a generator of scale transformations [19]. It is to be noted that the
minimization condition (30} is to be used for each individual energy level. Hence we obtain

ae® .Ake® gBe [ ,, o’ o JogA+CAg  ogB
2 ()

) 2R R A 2
A%2 KB AkgB kgD
—26 - - ~30 )25 e
e {4&2 oT; }J’e I W2 4n }
252 2 Ak 172
reo |82 8RN 20K L 2 omerck
4n2 8n
+[eze UL D agA+Chg _ogB| _ o, [A% £B
)" 2 7 7 PP
3 4 |AkgB kgD g [&°B%  g*F
_Zgw | AKeE R8Tl _gew|EE BT |
2° { 2w 4n | &R e 0 S

Equations {27) and (31) together give £ for various values of Z, «, x and g.
‘We now discuss the following three cases.

3.1, Point Coulomb problem: V(r} = —a/r
In this case § = k = g = 0 in equation (18). Equation (31) gives

1
e . S - . (32)

so that from equation (27) we get

m

R . : (33)

1 +a?/n?
which illustrates that our formulae (27) and (31) reproduce exact results for the binding
energies of the Conlomb potential.
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3.2. Coulomb potential with vector and scalar parts equal to —o/r and —a/r respectively

In this case the Dirac equation is H|¥) = E|¥) where

H:a-p+ﬁ(m—5)—5. (34)
r r
We slightly modify the generators of the SO (2, 1} algebra given in (3) in the following

way:

i I ) . .
=3 [?‘p2+r+;{—m2+a2—1(aa-r—ﬁaa-r)}]
TI = % [rpz—r+ %{_mz_'_az—i(aa, f._ﬁaa,fa)}] (35)
Tao=r-p—i

and they satisfy the commutation relations giver in equation (1). We shall quote in the
following the essential steps as the detailed discussion can be found in sections 2 and 3.
The Casimir operator is given by -

T2 = J? — o +a° —i(e — oo - 7

=n'(n' +1) (36)
n' denoting the eigenvalue of T2 and n' = —y or y — 1 where
y =[(j + £ —o? + 7172 G7

The eigenvalues of 75 will be given by
i=y+S §=0,1,2,....
In this case equation (24) reads
SUE, 8) = T[e° + (B> — m%e P+ Ta[ef — (B2 — mD)e™] — 20E — 2am. (38)
Now choose 8 in such a manner that the coefficients of 7) vanish so that § is given by
o = m? — F2 (39)

and from equation (38} using (39) we get

- [ﬁ\/m—aa]

C\£2+52

which agrees completely with the results obtained in [15].

Table 1. Potential expansion coefficients from the third-order polynomial least-squares fit to the
KS potential with A = 1.132Z'/3 taken from {11].

Z Vi i 7

13 —L04 074 =025
30 ~L13 091 =035
74 —-1.21 106 —043
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Table 2. Relativistic binding energies in keV for the kS potential as 2 function 1, x and Z. For
comparisons, we also give the resnlts of numerical calculations [11], APT [11] and siNT [12].

Binding energies in keV Percentage of errors
Present . Pre_s;nt
Z n Numerical  AFT SLNT work APT  SLNT  work
13 1 -1 1.505 1.503 1471 15145 0.1 20 06
30 1 -1 9.506 9.552 9.469 95727 05 04 07
2 -1 1.157 1.059 1.094 1.1676 5.0 50 09
1 1.021 0.9547 1.095 10456 7.0 7.0 24
-2 (.996% 0.9299 0.8619 0999 70 140 03
741 -1 6934 70.14 69.90 70.1745 1.0 08 12
2 -1 1196 11.94 11.86 12.0667 0.2 08 09
1 1144 11.46 11.87 116236 02 40 1.6
-2 1009 10.05 9.747 10.1675 04 30 08
0.0r Present result

«ernneees Hall

‘tl.l
b
1
w
0.15 . L L L -
0,005 0Oy GOB 002 0025
Y

Figure 1. Energy trajectory with ¢ = 1/2 and j = [/2.

Present resull
P HOH

Y —

— .01 1 1 1 l l
0.013 0.000 0,0002 0.0002%

—_—

Figure 2. Energy trajectory with & = 1/2 and f = 5/2.

3.3. Coulomb plus linear potential: V(r) = —afr + kr

In this case § = g == 0 in equation (18}, so that from equation {30) we get

Ake™? 29( ) . (Azkz kZB) aAk T’z
o )[ I-I-_2 +e a2 on ———+Ck-{-m - 2ok
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2 A2k2 sz
26 ]_ Ct_ —_ —2 —— e — =
-I-[e ( +5 - 0 @41)
and equation (27) gives
ae?  Ake™® o? A% KB
Ee=—— 2814 2 gl el et
AT "'[e (+ﬁ2)+e (4&2 25)
Ak 12
——-°‘ + Ck+m?+ 2ak] : (42)

Equations (41) and (42) together give the binding energies for oz and k.

4. Results and conclusions

In table 1, we give the potential expansion coefficients for a particular value of Z taken
from [11]. In table 2, we give the relativistic binding energies obtained from equations (27)
and (31) and compare them with the results from analytic perturbation theory (APT) [11],
shifted large N technique (SLNT) [12] and numerical calculations [11]. K is evident from
the table that our lowest-order analytical results which are simple, in principle, to calculate,
are in excellent agreement with the numerical calculations, the maximum error being 2.4%,
whereas in the case of APT it is 7% and 14% in SLNT.

In figures 1 and 2 we compare our results obtained from equations (41} and (42) with
those from {14] and both the figares indicate that our results reproduce the results of [14]
with good accuracy.

So, in this paper, we have succeeded in obtaining compact analytic expressions as well as
fairly accurate numerical results for the KS potential and Coulomb plus linear potential. The
present method is quite general in the sense that it is applicable to any radially symmetric
potential. Moreover, in this approach it is not necessary to reduce the Dirac equation to
Schrodinger-like form before applying SO (2, 1) formalism.
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